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Developments in Axisymmetric Gravity

When a subject is too complex, it is most natural to reduce it by
imposing restrictions, delimit smaller areas, and then remove them
progressively until the whole is understood. The idea is to design a
division in parts of similar difficulty but one that we are capable of
analyzing. All at once the whole may be difficult but not when we
think it in appropriate sectors. This reductionism occurs most often
spontaneously when the subject is too big that there is no agreement
or simply no possibility of agreement among scientists on how to make
a convenient partition. Under such circumstances people from differ-
ent backgrounds, different places and sometimes at different epochs,
chose what they believe is more interesting and more convenient to
do. The subject is then investigated a bit chaotically, what carries obvi-
ous advantages and disadvantages. Axisymmetric Gravity enjoys a bit
of everything.

Celestial bodies with the simplest shapes are those spherically sym-
metric. Such objects look the same when we rotate them in any direc-
tion. Axisymmetric bodies instead have the next degree of complexity.
They look the same when we rotate them only through a particular
axis, the symmetry axis. A soccer ball is spherically symmetric, but
pears or eggs are just axially symmetric (roughly). Axisymmetric gravi-
tational systems are, by definition, ones having an axis of symmetry.
They can be for instance stars, pulsars, galaxies, black holes or gravita-
tional waves. These systems are obviously important in the current
international context of research. Its complexity balances somewhere
between that of the whole Einstein's theory and that of very reduced
systems considered in the past. 

Historically, mathematical studies of General Relativity were divided
according to their mathematical complexity (this can be good or bad,
but it is undeniably human). It turns out that the more symmetries a
system has, the simpler it is to analyze. For this reason spherically
symmetric systems are among the simplest ones and the more investi-
gated. On the other hand axisymmetric systems are more complex and
require also greater mathematical complexity. Let us bring some exam-
ples. Spherically symmetric (vacuum) black holes there are only of one
type, the Schwarzschild black holes and are parametrized simply by
their mass. They were discovered by K. Schwarzschild in 1915 just a
few months after Einstein's explanation of Mercury's perihelion and
before the definitive version of General Relativity appeared (!). For
many reasons, Schwarzschild's article is a historical landmark. But it
took almost fifty years until rotating axisymmetric black holes were
found by R. Kerr in 1963 and are parametrized by their mass and
angular momentum. Kerr's achievement is another landmark (here it
does not matter how mathematically simple things look from our con-
temporary eyes).

The story ends with the proof that stationary-axisymmetric single
black holes are known to be just of the Kerr type. This is the result of
many years of research, with many highlights, but I will not enter into
that here.
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But what about two black holes aligned along a symmetry axis (as
depicted in Figure 1)? If two aligned black holes were to spin in oppo-
site directions, the net effect of the counter rotation would be a net
repulsion. Could then two black holes remain each other apart (but in
equilibrium) by the balance between spin repulsion and gravitational
attraction? And, what about three or more holes in equilibrium? This
is an interesting story in which many people at the AEI played a role.
It is also a story that has more to say and this is why we are describing
it in this short report.

What Gernot Neugebauer (F. Schiller University - Jena) and Jörg
Hennig (Otago University - New Zealand; formerly at the AEI) had
found was that such configuration in fact cannot exist (see [2] and ref-
erences therein). The key ingredient was the remarkable inequality
A ≥ 8π|J| between the area A and the angular momentum |J| of black
holes. The inequality roughly says that the more black holes rotate the
bigger they are. What Neugebauer and Hennig showed was that,
if two aligned black-holes exist in equilibrium, then the inequality
A ≥ 8π|J| cannot hold simultaneously at both holes. They concluded
then, a posteriori, that the assumed configuration is impossible. The
inequality A ≥ 8π|J| was first proved by Hennig, Ansorg and Ceder-
baum (all formerly at AEI) for stationary black-holes. What is remark-
able is that it is also an inequality valid for dynamical (i.e. non-station-
ary) axisymmetric black holes as shown by S. Dain and the author [1].
As important, the method of proof in [1] allowed a variety of other
achievements. First, it was extended to higher dimensions (by Hol-
lands), extended to include charge (by Gabach, Jaramillo & Reiris),
and to include a dilaton field (by Yazadjiev). Finally, in a joint work (to
appear) between the author and Eugenia Gabach (formerly at the
AEI) it allowed a complete description of the whole geometry of
dynamical black holes, namely it allowed a detailed and accurate
account of the shapes that black holes can enjoy. 

Many avenues of research are open for the time to come. First, it is
still open the question whether more than two black holes could stay
in axisymmetric equilibrium. Or, what about non-aligned black holes?
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Fig.1: Representation of two
aligned rotating black holes of
areas A 1 and A 2 and angular
momentums J 1 and J 2.
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Could there exist configurations where several non-aligned black
holes remain in equilibrium? In other words are the Kerr black holes
the only (vacuum) ones existing in nature? These old questions entan-
gle fascinating mathematical difficulties that are currently being inves-
tigated by the community and where the developments mentioned
above could play a big role.

Martin Reiris 

From Here to Infinity on a Single Computer

Numerical relativity has made great strides in recent years. Simula-
tions of binary black hole mergers, a major unsolved problem until the
breakthrough in 2005, have by now become routine. Yet several issues
remain, and these can often benefit from an improved mathematical
understanding of the field equations and global properties of their
solutions. In the following we give one example of such a problem.

A reasonable idealisation of a common situation in astrophysics is an
isolated system, i.e. an asymptotically flat spacetime containing a com-
pact self-gravitating source, e.g. a neutron star, black hole binary, etc.
The highly non-linear dynamics close to the source require a numeri-
cal solution of the field equations. But how do we represent the entire
unbounded domain with finite computational resources?

Let us recall that there are three different types of “infinity” in general
relativity: spatial infinity, future/past timelike infinity (which the
worldlines of observers approach) and future/past null infinity (which
light rays approach). This can be conveniently represented in a Pen-
rose diagram (Figure 1).

Evolution with finite boundary
The standard method is to slice spacetime into spacelike hypersur-
faces approaching spatial infinity (also shown in Figure 1). Each slice
corresponds to one instant of time. In the 3+1 formulation of general
relativity, the Einstein equations split into constraint equations that
must hold on each slice, and evolution equations that take us from
one slice to the next. As is apparent from Figure 1, outgoing radiation
never leaves the spatial slices as time proceeds, because all the slices
end at spatial infinity. Therefore, compactifying the spatial coordi-
nates on the slices so that spatial infinity is brought to a finite coordi-
nate location is not a good idea because the wavelength of the radia-
tion will appear to be increasingly “blue-shifted” and ultimately will
fail to be resolved on the numerical grid.

Instead, one usually truncates the spatial slices at a finite distance
from the source and only solves the equations in the interior. This
introduces an artificial timelike boundary, where boundary conditions
must be imposed. Among other things, these should (ideally) guaran-
tee that the solution on the truncated domain is identical with the
solution on the unbounded domain. In particular, one would like
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Fig.1: Penrose diagram of
Minkowski space, with spatial
infinity i0, future/past timelike
infinity i± and future/past null
infinity !±. Included is a com-
pact source (grey area) and
outgoing radiation (grey
arrows). The horizontal lines
represent a foliation of space-
time into spacelike hypersur-
faces approaching spatial
infinity, truncated at a finite
distance (vertical line).
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